
Peter Willendrup, DTU Physics and ESS DMSC

mcstas-2.x vs. mcstas-3.0,
status and elements of the
GPU port

Peter Willendrup and Jakob Garde DTU Physics

1

Peter Willendrup, DTU Physics and ESS DMSC

McStas 2.x -> McStas 3.0 main differences
• Rewritten / streamlined simplified code-generator with

• Much less generated code
• improved compile time and compiler optimizations, esp. for large instrs
• changes to engine API for component developers
• definition parameters no longer supported in components (strings, arrays etc. as replacement)
• much easier to hack/experiment directly on the generated code
• new USERVARS feature which enriches the particle struct to enable “per particle” flags
• Much less invasive use of #define
• Component sections -> functions rather than #define / #undef
• Much less global variables, instrument, component and neutron reworked to be structures

• Use of #pragma acc … in lots of places (put in place by cogen where possible)

• New random number generator implemented

• Complete change to dynamic monitor-arrays

• Various tricks relating to GPU
2

Peter Willendrup, DTU Physics and ESS DMSC

Main events on timeline of current developments

3

2017: E. Farhi
initial cogen
modernisation

March 2018:
Participation at
Dresden Hackathon.
1st “null” instrument
prototype runs.

Fall 2018 onwards: J. Garde
further cogen modernisation and
restructuring

October 2019:
Participation at Espoo
Hackathon. First meaningful
data extracted. Work on
cogen and realising we need
another RNG.

October 2019 onwards:
J. Garde & P. Willendrup:
New RNG, test system, multiple
functional instruments.

November-
December 2019:
First good look at
benchmarks and
overview of what
needs doing for first
release with limited
GPU support.

mentor: Vishal Metha mentor: Christian Hundt

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU… March 2018

4

bootstrapping: 5 McStas/McXtrace
developers @ 

2018 GPU hackathon in
Dresden

n
McStasMcCode on GPU?

More to come in 2019!

1st prototype, “null”-
instrument with only
one component.

Based on NVIDIA
compiler technology,

PGCC and OpenACC

pragmas

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU… October 2019

5

Rewritten code-
generation with
automated additions of
OpenACC pragmas.

Quite transparent wrt.
CPU vs. GPU

First simulations with
meaningful output

Speed on DELL with
Quadro-card ~ on par
with running on CPU
with MPI

Peter Willendrup, DTU Physics and ESS DMSC 6

Peter Willendrup, DTU Physics and ESS DMSC

• Illustration,
simple instr with

• Instr vars and
“flag”

• Arm

• Source

• Slit

• PSD

7

Peter Willendrup, DTU Physics and ESS DMSC 8

All the stuff usually put in DECLARE earlier like

• double var=3.0;

• function declarations

are actually OK to here, but not so in the components.

For symmetry we suggest initialisation in initialise only.

Becomes part of the _particle struct, i.e. can change with each particle

Peter Willendrup, DTU Physics and ESS DMSC

Arm
unchanged

9

Peter Willendrup, DTU Physics and ESS DMSC 10

Source_simple
minor changes

Peter Willendrup, DTU Physics and ESS DMSC 11

Slit
unchanged

Peter Willendrup, DTU Physics and ESS DMSC 12

PSD lots
of
changes

Peter Willendrup, DTU Physics and ESS DMSC 13

PSD lots
of
changes No more DEFINITION PARAMETERS

Use of new DArray2d for dynamic allocation

Peter Willendrup, DTU Physics and ESS DMSC 14

PSD lots of changes

Enabling atomic writes on the detector arrays

Peter Willendrup, DTU Physics and ESS DMSC

Generated code: LOTS of changes

15

Peter Willendrup, DTU Physics and ESS DMSC

The neutron and “state-flags” in the instrument

16

v2.5: Global variables

v3.0: particle struct, including any USERVARS like flag.

Peter Willendrup, DTU Physics and ESS DMSC

Input parameters and the instrument struct

17

… in e.g. an EXTEND section one should now use the macro INSTRUMENT_GETPAR(dummy) which translates
the bare dummy into instrument->_parameters._dummy

#define INSTRUMENT_GETPAR(par) (instrument->_parameters._ ## par)

Peter Willendrup, DTU Physics and ESS DMSC 18

Declare section

Initialise section

Functions per component with
related component structs

Peter Willendrup, DTU Physics and ESS DMSC 19

Component struct example

OpenACC clause to define
variable in device scope.

Built from component definition

Peter Willendrup, DTU Physics and ESS DMSC 20

Component
init function
example

…. etc

Contains component initialise

section

Peter Willendrup, DTU Physics and ESS DMSC 21

Instrument and
component
structs built on
CPU and
transferred to
GPU using
OpenACC
pragmas at the
end of

INITIALISE

Similar “host” update
in FINALLY

Peter Willendrup, DTU Physics and ESS DMSC 22

Main trace
Loop (v1)

…. etc

CPU may execute
multiple
GPU loops

Main parallel pragma that define kernel

Cogen-constructed function with calls
to component trace functions

Peter Willendrup, DTU Physics and ESS DMSC 23…. etc

Comp 1

Comp 2

Main trace
Loop (v1)

Peter Willendrup, DTU Physics and ESS DMSC 24

Main trace
Loop (v2)
potentially
“funnelled”

Initialise / generate particles
GPU side

Smaller “innerloop” due to
memory needs for the
array of “particles” etc.

Allocation of particle array

“fill” the array and make it
available to GPU

Peter Willendrup, DTU Physics and ESS DMSC

Main trace
Loop (v2)
potentially
“funnelled”

25

Comp 1 in
independent kernel

Comp 2 in
independent kernel

One would then get rid of ABSORB’ed
particles, do SPLITS here

Peter Willendrup, DTU Physics and ESS DMSC 26

Both trace
approaches
execute the
normal
component
trace function,

example:

…. etc

Contains component trace

section

Peter Willendrup, DTU Physics and ESS DMSC

Pro’s and cons
• V1 in general parallelises well, but SPLITS may not be easy to do

• V2 is slower due to multiple kernels and related memory transfer overhead (?). Allows
SPLIT

• We are thinking if we should do V3 “best of both worlds”, i.e. multiple kernels only when
SPLIT is introduced, each SPLIT infers a problem-reduction and another kernel

• Underlying component code identical, only changes in the code generation needed

27

Peter Willendrup, DTU Physics and ESS DMSC

Pragmas
and libs
used

28

“math.h on GPU”

Needed basic variables / flags

GPUify all functions to be executed
on GPU, i.e. in TRACE

Global instrument struct and component
structs, including members like detector
arrays etc.

OpenACC pure c-code, e.g. for the
attaches (pointer-setup)

Ensure GLOBAL structs updated
GPU-side end of INITIALISE

GPUify all functions to be executed
on GPU, i.e. in TRACE
anything written to by multiple threads
(detectors) should be “atomic” Loop V1

Loop V2

Ensure GLOBAL structs updated
host-side start of FINALLY

Peter Willendrup, DTU Physics and ESS DMSC

New RNG ‘KISS’
• We couldn’t easily port Mersenne Twister

• Experimenting with curand showed huge overhead for our relative small number of
random numbers

• An RNG ‘state’ carried with each particle - bonus: same seed gives same numbers even
when comparing between CPU and GPU

• Required patching prototype of ALL functions making use of e.g. rand01()

29

Peter Willendrup, DTU Physics and ESS DMSC

Compiler settings used

30

pgcc -ta=tesla,managed,deepcopy -Minfo=accel -DUSE_PGI -DNOSIGNALS -DRNG_ALG=2

Generate Tesla code. “compute capability” e.g. tesla:cc70
may be specified to indicate specific card.

Use CUDA shared memory for host-device-host allocation. Needed
for our 2D-arrays at present, may include penalty, we could get rid.

Used to indicate that copies of variables should be ‘deep’, e.g. for
our structs. (… but removing it seems to have little / no influence?)

Give accel debug information

Main “enable GPU” switch

Disable our signal handling, e.g. USR2 for save.
Also the case in our MPI implementation.

Use our new KISS rng

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU…
November 2019

31

9 instruments fully
ported, also realistic
ones like PSI_DMC*

10-core MPI run,
1e7 in 2 secs

Tesla V100 run,
1e9 in 22 secs

~ i.e. 2 orders of
magnitude wrt. a single,
modern CPU core

*Guide component without reflection-file support, SPLIT disabled, OFF geometry disabled

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU… November 2019 - first good look at performance.
Wallclocks:

32

CPU
MPI

V100 (datacenter)

Geforce GTX 1080 (desktop)

Quadro T2000 (laptop)

Idealised instrument
with source and monitor
only - i.e. without any
use of the ABSORB
macro.

(Likely a good indication
of maximal speedup
achievable.)

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU… November 2019 - first good look at performance.
Speedup:

33

Idealised instrument
with source and monitor
only - i.e. without any
use of the ABSORB
macro.

(Likely a good indication
of maximal speedup
achievable.) Renormalised to wall-

clock of single-core
gcc standard simulation

~600

Looks like a factor of ~600

Peter Willendrup, DTU Physics and ESS DMSC

McStas heading for the GPU… December 2019 - today’s compilation status:

34

Numerical output with graphics:
http://new-nightly.mccode.org/2019-12-06/2019-12-06_output.html

Statistics:

http://new-nightly.mccode.org/2019-12-06/stats.txt

(38 of 142 instruments, 62 of 207 components

http://new-nightly.mccode.org/2019-12-06/2019-12-06_output.html
http://new-nightly.mccode.org/2019-12-06/stats.txt

Peter Willendrup, DTU Physics and ESS DMSC

McStas 3.0 - next generation code generator - release plans

• Limited-functionality “beta” release to be made public soon (jan-mar) after 2.6 (january)
• Expect bugs!
• Only a subset of components / instruments
• Event interchange with 2.6 possible via MCPL

• Main purpose: get this working in ‘the wild’
• Your instruments will likely require (limited) rewriting

• Your instruments will need USERVARS for flags that change with each neutron
• Your own components will likely require rewriting

• Support for DEFINITION PARAMETERS is deprecated. Use the new string, vector, … instead
• New macro MC_GETPAR2 needed to access other component scopes (NOT via defines)
• E.g. the declare section cannot include assignments
• Arrays must be declared/initialized using a new set of functions

(i.e. not double PSD_I[nx][ny] with definition parms)

• Hence some backward compatibility is lost and we need to increment major release #

35

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

McStas 3.0 - next generation code generator - code camp
January 27th-31st in Copenhagen

• Code-camp participants:
• McStas-McXtrace team (bold means confirmed):

• Peter Willendrup, Emmanuel Farhi, Erik Knudsen, Jakob Garde, Tobias Weber, Torben R Nielsen,
Mads Bertelsen

• RAMP team from the UK
(RAMP is relatively young “McStas equivalent” with GPU-support from the beginning via C++ and OpenCL.)
• Gino Cassella, Göran Nilsen

• We didn’t attract someone from Nvidia, but we have access to Guido Juckeland in Dresden

• Code-camp focal points:
• Port as many remaining instruments / components as possible to GPU
• Experiment with “telescopic flow”/V2/V3, i.e. a different approach to handling ABSORB’s and SPLIT’s
• Experiment with simulation flow between CPU and GPU (a few things can not be done GPU)
• Comparisons with RAMP
• Initiate port of GPU work to McXtrace tree
• Have fun! :-)

36

n
McStas

